Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J STD AIDS ; : 9564624241244832, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610106

ABSTRACT

BACKGROUND: MPOX (Monkeypox) viral infection, a zoonotic disease previously confined to the African sub-continent, has caught attention worldwide recently due to its resurgence in a new 'avatar' among urban communities. Dermatologists in the U. A. E. started to see patients with fever and a self-limiting pustular necrotic rash that was negative for all other infectious investigations. METHODS: We performed a prospective observational multicenter clinical study of the demographics, skin manifestations, and outcomes of patients presenting with necrotic pustular lesions and/or fever. RESULTS: 35 cases of PCR confirmed MPOX cases, mostly in the expatriate population, were followed up and found to have high-risk heterosexual contact on an average of 1 week prior to disease onset. We found that they have characteristic annular pustular lesions with necrotic center or "Smoke ring pustules' in all cases. Lesion tenderness and predilection for the lower abdomen, pubic area, and genitalia were observed. Most cases were systemically stable, with fever lasting for an average of 4 days and elevated CRP levels. Genital lesions were prone to secondary bacterial infections. The disease was severe, with larger annular plaques in one of our patients found to be living with HIV. CONCLUSIONS: The overall prognosis in healthy individuals is good, with lesions healing within an average of 2 weeks without scarring. 'New world MPOX' should be unclassified from zoonosis to a sexually transmitted infection (STI) capable of transmission in an urban population. Our findings can help in early clinical suspicion and differentiation from other STI's for primary and secondary health care physicians.

2.
Front Public Health ; 10: 974667, 2022.
Article in English | MEDLINE | ID: mdl-36091505

ABSTRACT

Next Generation Sequencing (NGS) is the gold standard for the detection of new variants of SARS-CoV-2 including those which have immune escape properties, high infectivity, and variable severity. This test is helpful in genomic surveillance, for planning appropriate and timely public health interventions. But labs with NGS facilities are not available in small or medium research settings due to the high cost of setting up such a facility. Transportation of samples from many places to few centers for NGS testing also produces delays due to transportation and sample overload leading in turn to delays in patient management and community interventions. This becomes more important for patients traveling from hotspot regions or those suspected of harboring a new variant. Another major issue is the high cost of NGS-based tests. Thus, it may not be a good option for an economically viable surveillance program requiring immediate result generation and patient follow-up. The current study used a cost-effective facility which can be set up in a common research lab and which is replicable in similar centers with expertise in Sanger nucleotide sequencing. More samples can be processed at a time and can generate the results in a maximum of 2 days (1 day for a 24 h working lab). We analyzed the nucleotide sequence of the Receptor Binding Domain (RBD) region of SARS-CoV-2 by the Sanger sequencing using in-house developed methods. The SARS-CoV-2 variant surveillance was done during the period of March 2021 to May 2022 in the Northern region of Kerala, a state in India with a population of 36.4 million, for implementing appropriate timely interventions. Our findings broadly agree with those from elsewhere in India and other countries during the period.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , SARS-CoV-2/genetics
3.
Front Public Health ; 10: 818545, 2022.
Article in English | MEDLINE | ID: mdl-35252095

ABSTRACT

We report here a Nipah virus (NiV) outbreak in Kozhikode district of Kerala state, India, which had caused fatal encephalitis in a 12-year-old boy and the outbreak response, which led to the successful containment of the disease and the related investigations. Quantitative real-time reverse transcription (RT)-PCR, ELISA-based antibody detection, and whole genome sequencing (WGS) were performed to confirm the NiV infection. Contacts of the index case were traced and isolated based on risk categorization. Bats from the areas near the epicenter of the outbreak were sampled for throat swabs, rectal swabs, and blood samples for NiV screening by real-time RT-PCR and anti-NiV bat immunoglobulin G (IgG) ELISA. A plaque reduction neutralization test was performed for the detection of neutralizing antibodies. Nipah viral RNA could be detected from blood, bronchial wash, endotracheal (ET) secretion, and cerebrospinal fluid (CSF) and anti-NiV immunoglobulin M (IgM) antibodies from the serum sample of the index case. Rapid establishment of an onsite NiV diagnostic facility and contact tracing helped in quick containment of the outbreak. NiV sequences retrieved from the clinical specimen of the index case formed a sub-cluster with the earlier reported Nipah I genotype sequences from India with more than 95% similarity. Anti-NiV IgG positivity could be detected in 21% of Pteropus medius (P. medius) and 37.73% of Rousettus leschenaultia (R. leschenaultia). Neutralizing antibodies against NiV could be detected in P. medius. Stringent surveillance and awareness campaigns need to be implemented in the area to reduce human-bat interactions and minimize spillover events, which can lead to sporadic outbreaks of NiV.


Subject(s)
COVID-19 , Nipah Virus , Child , Disease Outbreaks , Humans , Male , Nipah Virus/genetics , Pandemics , SARS-CoV-2
4.
Front Genet ; 12: 630542, 2021.
Article in English | MEDLINE | ID: mdl-33815467

ABSTRACT

Coronavirus disease 2019 (COVID-19) rapidly spread from a city in China to almost every country in the world, affecting millions of individuals. The rapid increase in the COVID-19 cases in the state of Kerala in India has necessitated the understanding of SARS-CoV-2 genetic epidemiology. We sequenced 200 samples from patients in Kerala using COVIDSeq protocol amplicon-based sequencing. The analysis identified 166 high-quality single-nucleotide variants encompassing four novel variants and 89 new variants in the Indian isolated SARS-CoV-2. Phylogenetic and haplotype analysis revealed that the virus was dominated by three distinct introductions followed by local spread suggesting recent outbreaks and that it belongs to the A2a clade. Further analysis of the functional variants revealed that two variants in the S gene associated with increased infectivity and five variants mapped in primer binding sites affect the efficacy of RT-PCR. To the best of our knowledge, this is the first and most comprehensive report of SARS-CoV-2 genetic epidemiology from Kerala.

5.
J Family Med Prim Care ; 8(9): 2903-2907, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31681664

ABSTRACT

INTRODUCTION: The identification of smear negative pulmonary and extrapulmonary tuberculosis continues to remain a diagnostic challenge. This study was conducted in a tertiary care setup in north Kerala to isolate and identify mycobacteria by culture from radiologically and clinically suspected cases of smear negative pulmonary and extrapulmonary tuberculosis. METHODS: A total of 200 samples (100 pulmonary and 100 extrapulmonary) were processed and cultured by automated (MB/BacT) and conventional methods. Heat stable catalase test, nitrate reduction test and detection of MPT 64 antigen were done to aid species identification. RESULTS: Overall culture positivity was 7% (14 isolates - 8 pulmonary and 6 extrapulmonary) of which 92.9% (13) of the isolates were Mycobacterium tuberculosis and 7.1% (1) was Mycobacterium fortuitum (identified by molecular typing). Detection rate by automated method was 7% (14) and by conventional method was only 1.5% (3). CONCLUSION: Despite its shortcomings and low positivity, culture still remains the gold standard for the diagnosis of EPTB and SNPT. However, automated liquid cultures have better isolation rates than the conventional LJ culture. Subjecting these isolates to rapid diagnostic tests like antigen detection and LPA can aid in the early institution of appropriate treatment regimen.

6.
J Pathog ; 2016: 6235618, 2016.
Article in English | MEDLINE | ID: mdl-27099794

ABSTRACT

In a high tuberculosis burdened country like India, rapid, cost-effective, and reliable diagnostic tools for tuberculosis are an urgent need of the hour to prevent inappropriate treatment strategies and further spread of resistance. This study aimed to estimate the proportion of new smear-positive tuberculosis cases with primary resistance to rifampicin and/or isoniazid as well as identify the common mutations associated with it. Sputum of 200 newly diagnosed smear-positive cases of 1+ score and above was directly subjected to Line Probe Assay using the GenoType MTBDRplus assay kit. All samples were inoculated onto solid media and 61 samples were inoculated in automated liquid culture also. The Line Probe Assay gave hundred percent interpretable results with 2.5% of the study population showing resistant pattern. Only 1% of the cases were primary multidrug resistant tuberculosis and 1.5% showed isoniazid monoresistance. S531L and C15T were the most common genetic mutations seen for rifampicin and isoniazid resistance, respectively. 40% had absent rpoB wild type 8 band indicating probable silent mutation after clinical correlation. The average turnaround time for Line Probe Assay was far less (3.8 days) as compared to solid and liquid cultures (35.6 days and 13.5 days, resp.).

SELECTION OF CITATIONS
SEARCH DETAIL
...